If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-27-6x=0
a = 1; b = -6; c = -27;
Δ = b2-4ac
Δ = -62-4·1·(-27)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-12}{2*1}=\frac{-6}{2} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+12}{2*1}=\frac{18}{2} =9 $
| 5x+8=6x+0 | | 5z+3=7z-1 | | 11x=8×-6 | | 2x/3x+7=0 | | x^2+2/3=11/6x | | 2x-15+7x+50=180 | | 0.35(x-4)=0.25(x-6 | | x^2+(2/3)=(11/6)x | | 2x-15x+7x+50=180 | | -7+a=-1 | | 2z-10=10-3z | | x^2-18-7x=-x+9 | | 9y÷3=18 | | 8d+16-4=60 | | 15=5625/(5x*15) | | 15v=0 | | 14x+14=16x+1 | | -7x+3=-2x-1 | | v+10=-10 | | 4z+6=-10 | | r-3/4=3/2 | | 3(v+7)=-6v-42 | | -3y+33=-5(y-5) | | R=(8x-18)-2x+5) | | 9(v+3)=-6v+12 | | a-18=24 | | z+9=18-2z | | -8u+48=4(u+9) | | 1/x=0.00218 | | -15x^2+135=0 | | 3x+-0.8=3x+4 | | H(t)=-16t+50t+1000 |